Traceabllity@Runtime

Cyril Faucher,
with the help of Francois Tanguy
and the idea of Didier Vojtisek and Franck Fleurey

IRISA Lab / INRIA Rennes, France
Triskell Group

Kermeta Day - April 2nd, 2009

@
=
|=
=
ad
©
Pin
=
S
@
O
©
I—
1

Outline

Motivation

Need traceability in model transformation
Implementation of the Traceability pattern
Factorization of the Traceability pattern

Conclusion

@
=
|=
=
ad
©
Pin
=
S
@
O
©
I—
2

>

@
E
|=
=
ad
©
Pin
=
S
@
O
©
I—
3

Motivation

Traceability is a key point in a model transformation impl.
Traceability@Runtime

— that means traceability in memory

— a traceability pattern is weaved into a metamodel

How to add traceability with the Kermeta Aspect ability

How to factorize the traceability pattern

Need traceability in Model
Transformation

>

 Model transformation of graphs, often in 2 passes
 1st: model elements creation
e 27d: |inks creation

Input model Output model

1rst pass 2nd pass

|
traceability element for keeping a
link between source and target
and resue it during the 2nd pass

(b
£
I=

>
Y
©

2
E

(g0

<)

(&)

=
|_

A

&3 Implementation of Traceability

« Traceabllity implementation in a classical way
— In Java: Hashtable<Object, Object>
— In Kermeta: Hashtable<Object, Object>

o With a specific model (c¢f Traceability MDK)

* . traceability

GEJ SN

= ° N

- : ‘.

= . N

= - &

>

=

._g

@ []
&

= Input model Output model
3)

Traceability@Runtime
Implementation

>

« With Aspect ability

— Add/weave a property “trace” in the ClassDefinition of
the input metamodel

from the input metamodel

aspect class MyClassMM1 |
reference trace : MyClassMME

i
from the output metamodel

» Retrieve the trace:
instance myClassMM1l.trace //returns a MyClassMM2

@
E
|=
=
ad
©
Pin
=
S
@
O
©
I—
6

Factorization of the
Traceability@Runtime pattern

P

« Combination of Aspect + Inheritance + Genericity, example
from the Kermeta compiler

package kermeta::language::structure;

require kermeta
regquire "http: /S www. eclipse. org/emf/EZ002/Ecore”

“using kermeta::language::structure
using ecore

“class Traceabilit}({g:::-: i _
reference EcoreModelElement : X O

—
_} S e e e e ===
____—————————__-\

—
i — e

reference ecorelDataType : EDataType[0..1]
reference subClassDhefinitions : ClassDefinition [0..*]

}

@
E
|=
=
ad
©
Pin
=
S
@
O
©
F—
I

Conclusion

>

e + none search phase, the trace is directly accessible as
a Property, trace is typed

e — all the traces are in memory, not easy to free the
memory

@
=
|=
=
ad
©
Pin
=
S
@
O
©
I—
8

QUESTION ?

D
=
c
>
'
®
=
=
]
D
&)
o
|_
9

	Outline
	Motivation
	Need traceability in Model Transformation
	Implementation of Traceability
	Traceability@Runtime implementation
	Factorization of the Traceability@Runtime pattern
	Conclusion

