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Motivation

Traceability is a key point in a model transformation impl.
Traceability@Runtime

— that means traceability in memory

— a traceability pattern is weaved into a metamodel

How to add traceability with the Kermeta Aspect ability

How to factorize the traceability pattern



Need traceability in Model
Transformation

>

 Model transformation of graphs, often in 2 passes
 1st: model elements creation
e 27d: |inks creation

Input model Output model

1rst pass 2nd pass

|
traceability element for keeping a
link between source and target
and resue it during the 2nd pass
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&3 Implementation of Traceability

« Traceabllity implementation in a classical way
— In Java: Hashtable<Object, Object>
— In Kermeta: Hashtable<Object, Object>

o With a specific model (c¢f Traceability MDK)

* . traceability
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Traceability@Runtime
Implementation

>

« With Aspect ability

— Add/weave a property “trace” in the ClassDefinition of
the input metamodel

from the input metamodel

aspect class MyClassMM1 |
reference trace : MyClassMME

i
from the output metamodel

» Retrieve the trace:
instance myClassMM1l.trace //returns a MyClassMM2
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Factorization of the
Traceability@Runtime pattern

P

« Combination of Aspect + Inheritance + Genericity, example
from the Kermeta compiler

package kermeta::language::structure;

require kermeta
regquire "http: /S www. eclipse. org/emf/EZ002/Ecore”

“using kermeta::language::structure
using ecore

“class Traceabilit}({g:::-: i _
reference EcoreModelElement : X O

—
_} S e e e e ===
____—————————__-\

—
i — e

reference ecorelDataType : EDataType[0..1]
reference subClassDhefinitions : ClassDefinition [0..*]

}
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Conclusion

>

e + none search phase, the trace is directly accessible as
a Property, trace is typed

e — all the traces are in memory, not easy to free the
memory
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