@
o)
O
S
g
R
=
=
S
O
=
o
©
=
S
X
1

Kermeta

/N compiled mode

Cyril Faucher

IRISA Lab / INRIA Rennes, France
Triskell Group

Kermeta Day - April 2nd, 2009

Outline

Motivation

Compilation process: Kmt to Java/EMF plugin
Need of a model to complement an *.ecore: Simk
How to customize a compilation process
Implementation details

Experiments

Conclusion

@
S
O
S
o
A
=
=
S
O
=
S
@
S
@
X
2

Motivation

>

« Why a compiler ?
— Improve the execution performance

 Why Java/EMF ?
— more deployable: Eclipse Plugin, Java Standalone
— Interoperability with the others MDE tools

— the Kermeta interpreted mode and tooling are based on
EMF, written in Java and integrated in Eclipse

@
o)
O
S
g
A
=
=
S
O
=
e
©
S
O
A4
3

-y

Compilation process

« A compilation process is executed
— In Eclipse
— by a right-click on the main Kmt of the Kermeta program

o 1rststep: merge the main Kmt dependencies, i.e. a Km file
containing all the required resources

o 2" step: transformation of the Km merged to Ecore + Simk

e 3" step: plugin generation with Java/EMF code sources
based on the EMF Jet templates

N Cﬁ,% SN

g o
o5
Metamodel *.km merged *.ecore with EMF plugin
as * ecore with all the annotations with Java
and as Plugin required * simk sources
and *.kmts resources

(«b)
[®)
@)
&
@)
2L
o
&
@)
(&)
=
(qv]
@
=
b}
N
A

Compilation process

>

e Output ™=p ¥ a plugin containing
— classical EMF model/ Java Classes (interface + impl.)
— Kermeta behavior in Java

— Java Main methods generated to ease the launch of
Java application (packages “runner”)

— helpers and extern impls. dedicated to the Kermeta
framework

— a copy of the *.km merged for the reflection

=> All the resources are present in the generated plugin e.h)

-y

@
=,
o
&
o
A
=1
=
O
O
=
©
©
=
O
\4
5

led mode

Q.
S
O
O
=

o Kermeta

X LR A

o AntworldSimulator ke 5

Fy o :

G = 5l - 40 o - =

EEEEENg
uperatluq-:rreateExtensTDnT;map Map, prev : Gridiode) is dol
*Sagguununt®
war exthode : Gridiode init Gridiode. new). createGriddodelmap)
extMode.id ;= prew.id + 1
exthode level := sefflevel + 1
extMode.isBorder 1= frue

pres next 1= exthode
seffoutside = exthlode

Kermeta
operation

seffisBarder = fafse

end

Compilation process

& createGrldNDde{Map} aridMode
= @2 |:rEaI:EE>cI:Ensu:u'@'-“l-fq:uJ aridMode)

ﬂil. '.SE:HI@IDBEI

= body - ...
=% map : Map
=3 prev : Gridiods
FinishLevel{Map, Gridhg
borderCheck() : Boolea
id Integer

- E--E--E
DD@@HH III

= level : Inkeger

=+ nextk 1 Gridiode

== inw_nexk © Griddode
=+ putside ; GridMode

[

(2 Problems | @ Javadoc @ Declaration

Properky
Kenw
Yalue

&= Value - body -> ...

Enter a value;

antworld, Gridiode extMNode = {{antworld, GridMode) org, kermetal compil,
extMode, setIdikermeta, standard. helper, InteqerWrapper, plus{prey, getl
extMode, setlevel(kermeta, standard, helper . Integert'rapper. plusthis, os
exthode. setIsBorder(true);

prey, setiext{extiMode);

this, setOutsidelextiode);

this,setIsBorder{False);

(<] i |

Ecore
EAnnotations

@ |

7 AntwWorldsimulator kmt

] “-.IIIIII....

.
. o®
a L e

Generat) |mp| antworld.Gridiiode extlNode =

#] antWorldSimulator.ecare

)] GridMade fava o

- public vuld'creatEExten51Dﬂ.(Hap map, CGridilode prewv) {|

[[antworld. ridiNode)

org.kermeta.compil. runtime

Chewlpject (antworld. Aintwor ldPackage . eINSTANCE .. getGridiode ()])

©emf

QECLIPSE MODELING FRAMEWORK

1):

.getlevel (],

createGridilode (man) »

extlNode.setId(kermeta.standard. helper. IntegerWrapper .. plus(prev.getId () ,

extNode.setlevel (kermeta.standard. helper. Integerirapper.plus (this
1))

Need of a model iIn complement
of Ecore

« The annotated Ecore model is not enough

- e.g.: to handle the call of super operation in multi-
Inheritance context, we need static methods to call the
given method

- Static Methods are not supported by Ecore
« Simk: Static Indirection Model for Kermeta

- developed for the compiler, but not dedicated
- a new metamodel instead of file generation, why ?

. to save at the end of the 2nd step the generated static
methods

. then use the generated sources at posteriori in the
compilation process, i.e. the generation of the methods
from Simk is performed after the EMF Java classes

generation by using Jet templates —-2

@
o)
o
S
o
&
'
=
o
O
=
e
©
=
@
A4
I

Need of a model to complement
an *.ecore

 The Java Method and Java Class signatures are modeled,
but the method body is a single String

« Simk model contains Java implementation for
— runners to launch runnable operations
— multi-inheritance support, invariant
— ValueType wrappers, e.q. plus() from [Integer

r‘l - .

i) AnkworldSimulator, simk 23 [Body -- SM Method plus E
<= 5M Method containingResource
4 5M Method checkallinyvarianks Enter a value:
= < 5M Method plus java.lang.Integer resul: = null;|

[B

<+ 3M Parameter self
java.lang.Boolean idIfCond_115 = false;

SMP L th
+ arame.er Hner idIFCond_115 = org.kermeta, compil.runtime. helper.language . Object
< M Return java.lang. Integer w

<= 5M Method toReal [{_] 1 | [l]

(2 Problems | @ Javadac @ Declaration | & console
|

Property Yalue

Abskrack [False I 8] 4 I [Zancel]
Aroess = public

Body =i fPratection of the Following code. .. [eed

Mame = plus

Parent EAtkribute

Parent ECQperation
Parent EReference

2M Conkext 4 SM Conkext kermeta,standard, helper
Stakic Ui brue

Tvpe Parameters 1=

Jzaqes 1= \Mrapper

@
=,
o
&
o
A
=1
=
O
O
=
©
©
=
O
\4
8

P

« The 2nd step of the compiler process (Km to Ecore +
EAnnotations)

Implementation details

— written In Kermeta as a model transformation
- transformation in 2 passes

o 1'st: creation of the Ecore elements

. 2Nd: creation of the links between the elements and
operation behavior

- Kermeta Aspect feature is used intensively

. management of the traceabllity for keeping the
source Km element corresponding to a new Ecore
element

 application of design patterns: visitor ...

@
=,
o
&
o
A
=1
=
O
O
=
©
©
=
O
\4
9

Implementation details

 The compiler is fully written in Kermeta
 Bootstrap, the compiler compiles itself

Compiler sources
In Kermeta

The following
iterations: the
compiler sources
are compiled in
compiled mode

1t iteration: the
compiler sources
are compiled in
interpreted mode.
Thus, it produces
the compiler written
in Java/EMF

¢ Copile%

= &emf

EEEEEEEEEEEEEEEEEEEEEEEEE

=> the compiler
compiles itself

D
)
@)
&
®)
2D
o
&
@)
(&)
IE
(qe]
i
D
&
S
(D)
N

=
o

Implementation details

* Enabling the usage of a metamodel generated as a plugin or
a simple Ecore metamodel for persistence issues

require a Metamodel
as an Ecore file or as
a generated plugln

/ weave Aspect on

= requ,re the Metamodel

o

S

o

D Metamodels 'ﬂﬂf i‘ Km merged

&

3 ResourceFactories 'ﬂ:l‘ y "

= = =

(qo] . . g N

T With a specific " conformsTo

= factory for loading - 0ad . compiled
= and saving, : oad | BA(S P
2 B ¥ — — [®en
11 Model

How to customize the
compilation process

e Customizing the compilation process
— used to automate recurrent settings and post-treatments
— parameter values are contained in a properties file

o SEtUngS for the genmodel B AntWorldSimulator.compiler.properties 53

plugin id = org.kermeta.antworldsimu

- plugln Id copyright header = License: EPL\nCopyright: IRISA / INRIA / Unive
require bundles =

— Copyrlght_header bundle version = 1.0.0

unzip externs = platform:/rescurce/AntWorld/dev/externs.zip;util

e Post-treatments
— require_bundles (plugin dependencies)
— bundle_version (plugin version)
— main_operatiOnS [available in SVN version]

— unzip_externs (including Java source codes given by
the User) [available in SVN version]

D
)
@)
&
®)
2D
o
&
@)
(&)
IE
(qe]
i
D
&
S
(D)
N

=
N

Current limitations

>

. Kermeta language features not supported

- Model Typing
- Dynamic Expression
- Recursive function type

« The process is not incremental

- the full process must be replayed for any Kermeta
program modifications

D
e
o
S
O
&
Q
=
o
o
IE
©
i
(<B)
&
| -
(D)
A4

=
w

D
i ®)
@)
&
®)
2L
o
&
@)
(&)
IE
(qv]
i
D
&
S
<}
N

H
S

Experiments

AntWorld simulation (live demo)
Kompose (reflexive algorithm)

OCL to Kermeta transformation

FSM (pre/post conditions and invariant)

Ecore from XSD + XML files as input/output

&, Experiments: AntWorld Simulation

e Algorithm goal: evaluate tool performance
— execution time
— memory usage

‘806 Greenfoot: ants

D
e
o
S
O
&
Q
=
o
o
IE
©
i
(<B)
&
| -
(D)
A4

Source: GreenFoot

=
(@)

Experiments: AntWorld Simulation

 AntWorld simulation demo’s content

H Map
gridofiodes
—| 0.1 0.*
H Gridiode 0.1
) o= isBorder @ Boolean
grldOfSnth next 0.1 = level : Integer 0.1 outside
— ehavior adde
ison | = id : Integer putsideGridhode b h dd d
= mode : Integer = pher : Integer b1

by Aspect

initial4xisNode [AxisNode
0.1 0.1
oiC |
outsideAxishode
0.1 H cCenterNode

" Generation of Ecore,
Be? O m]c o T, u | Simk and Genmodel

OECLIPSE MODELING FRAMEWORK models (including specific properties)

N\,

Execution as Java Application
in Eclipse i

D
)
@)
&
®)
2D
o
&
@)
(&)
IE
(qe]
i
D
&
S
(D)
N

=
(@))

&3 Experiments: AntWorld Simulation

e Results ’)’Q %%

— all the resources in a single plugin

— x50 faster than the interpreted mode %%?‘F::

usage: VMTS (x3)

D . . .

=1« Comparison with Graph Transformation tools

.§ — better results in terms of execution /
%_ time than other tools based on Eclipse gii;;l;i S/
= and eventually EMF like: Viatra2 (x4,9), :- -

@)

O EMF Transformation (x65) —
- PR Tl

' — best solution in terms of memory T e
@

=

(«b)

X

H
\l

Experiments

Kompose (reflexive algorithm)
OCL to Kermeta transformation
FSM (pre/post conditions and invariant)

Ecore from XSD + XML files as input/output models

Medium rate: x35 faster than the interpreted mode

D
e
o
S
O
&
Q
=
o
o
IE
©
i
(<B)
&
| -
(D)
A4

=
oo

Conclusion

>

Increase performance (x35 faster)

Generate a Kermeta program as a Java/EMF plugin

Improve the deployment process in industrial context

Easy to use: a simple right-click

D
e
o
S
™)
&
Q
=
o
o
IE
©
i
(<B)
&
| -
(D)
A4

=
O

QUESTION ?

Try the compiler !
Download Kermeta 1.3.0

Documentation available on the Kermeta web site

-y

http://kermeta.org/community/dev/compilerCompilinglssues

D
e
o
S
™)
&
Q
=
o
o
IE
©
i
(<B)
&
| -
(D)
A4

N
o

	Outline
	Motivation
	Compilation process
	Compilation process
	Compilation process
	Need of a model in complement of Ecore
	Need of a model to complement an *.ecore
	Implementation details
	Implementation details
	Implementation details
	How to customize the compilation process
	Current limitations
	Experiments
	Experiments: AntWorld Simulation
	Experiments: AntWorld Simulation
	Experiments: AntWorld Simulation
	Experiments
	Conclusion
	Outline
	Motivation
	Compilation process
	Compilation process
	Compilation process
	Need of a model in complement of Ecore
	Need of a model to complement an *.ecore
	Implementation details
	Implementation details
	Implementation details
	How to customize the compilation process
	Current limitations
	Experiments
	Experiments: AntWorld Simulation
	Experiments: AntWorld Simulation
	Experiments: AntWorld Simulation
	Experiments
	Conclusion

