
1

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Kermeta

in compiled mode

Cyril Faucher

IRISA Lab / INRIA Rennes, France
Triskell Group

Kermeta Day - April 2nd, 2009

2

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Outline

Motivation

Compilation process: Kmt to Java/EMF plugin

Need of a model to complement an *.ecore: Simk

How to customize a compilation process

Implementation details

Experiments

Conclusion

3

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Motivation

• Why a compiler ?
– improve the execution performance

• Why Java/EMF ?
– more deployable: Eclipse Plugin, Java Standalone
– interoperability with the others MDE tools
– the Kermeta interpreted mode and tooling are based on

EMF, written in Java and integrated in Eclipse
– ...

4

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Compilation process

• A compilation process is executed
– in Eclipse
– by a right-click on the main Kmt of the Kermeta program

• 1rst step: merge the main Kmt dependencies, i.e. a Km file
containing all the required resources

• 2nd step: transformation of the Km merged to Ecore + Simk
• 3rd step: plugin generation with Java/EMF code sources

based on the EMF Jet templates

*.km merged
with all the
required

resources

*.ecore with
annotations

*.simk

EMF plugin
with Java
sources

Metamodel
as *.ecore

and as Plugin
and *.kmts

1 2 3
Main

5

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Compilation process

• Output a plugin containing
– classical EMF model Java Classes (interface + impl.)
– Kermeta behavior in Java
– Java Main methods generated to ease the launch of

Java application (packages “runner”)
– helpers and extern impls. dedicated to the Kermeta

framework
– a copy of the *.km merged for the reflection

=> All the resources are present in the generated plugin

6

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Compilation process

Kermeta
operation

Ecore
EAnnotations

Generated impl.

7

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Need of a model in complement
of Ecore

The annotated Ecore model is not enough

− e.g.: to handle the call of super operation in multi-
inheritance context, we need static methods to call the
given method

− Static Methods are not supported by Ecore
Simk: Static Indirection Model for Kermeta
− developed for the compiler, but not dedicated
− a new metamodel instead of file generation, why ?

to save at the end of the 2nd step the generated static
methods
then use the generated sources at posteriori in the
compilation process, i.e. the generation of the methods
from Simk is performed after the EMF Java classes
generation by using Jet templates

8

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Need of a model to complement
an *.ecore

• The Java Method and Java Class signatures are modeled,
but the method body is a single String

• Simk model contains Java implementation for
– runners to launch runnable operations
– multi-inheritance support, invariant
– ValueType wrappers, e.g. plus() from Integer

9

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Implementation details

The 2nd step of the compiler process (Km to Ecore +
EAnnotations)

− written in Kermeta as a model transformation
− transformation in 2 passes

1rst: creation of the Ecore elements
2nd: creation of the links between the elements and
operation behavior

− Kermeta Aspect feature is used intensively
management of the traceability for keeping the
source Km element corresponding to a new Ecore
element
application of design patterns: visitor …

10

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Implementation details

• The compiler is fully written in Kermeta
• Bootstrap, the compiler compiles itself

Compiler sources
in Kermeta

1rst iteration: the
compiler sources
are compiled in
interpreted mode.
Thus, it produces
the compiler written
in Java/EMF

The following
iterations: the
compiler sources
are compiled in
compiled mode

=> the compiler
compiles itself

Compiler

11

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Implementation details

• Enabling the usage of a metamodel generated as a plugin or
a simple Ecore metamodel for persistence issues

weave Aspect on
the Metamodel

require a Metamodel
as an Ecore file or as
a generated plugin

Km merged

Km compiled

require

conformsTo

load

save

Model

With a specific
factory for loading
and saving,
e.g.: Ecore

Metamodels

ResourceFactories

12

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

How to customize the
compilation process

• Customizing the compilation process
– used to automate recurrent settings and post-treatments
– parameter values are contained in a properties file

• Settings for the genmodel
– plugin_id
– copyright_header

• Post-treatments
– require_bundles (plugin dependencies)
– bundle_version (plugin version)
– main_operations [available in SVN version]

– unzip_externs (including Java source codes given by
the user) [available in SVN version]

13

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Current limitations

Kermeta language features not supported
− Model Typing
− Dynamic Expression
− Recursive function type

The process is not incremental
− the full process must be replayed for any Kermeta

program modifications

14

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Experiments

AntWorld simulation (live demo)

Kompose (reflexive algorithm)

OCL to Kermeta transformation

FSM (pre/post conditions and invariant)

Ecore from XSD + XML files as input/output

…

15

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Experiments: AntWorld Simulation

• Algorithm goal: evaluate tool performance
– execution time
– memory usage

Source: GreenFoot

16

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Experiments: AntWorld Simulation

• AntWorld simulation demo’s content

behavior added
by Aspect

Execution as Java Application
in Eclipse

Generation of Ecore,
Simk and Genmodel
models (including specific properties)

17

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Experiments: AntWorld Simulation

• Results
– all the resources in a single plugin
– x50 faster than the interpreted mode

• Comparison with Graph Transformation tools
– better results in terms of execution

time than other tools based on Eclipse
and eventually EMF like: Viatra2 (x4,9),
EMF Transformation (x65)

– best solution in terms of memory
usage: VMTS (x3)

18

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Experiments

AntWorld simulation (live demo)

Kompose (reflexive algorithm)

OCL to Kermeta transformation

FSM (pre/post conditions and invariant)

Ecore from XSD + XML files as input/output models

…

• Medium rate: x35 faster than the interpreted mode

19

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

Conclusion

Increase performance (x35 faster)

Generate a Kermeta program as a Java/EMF plugin

Improve the deployment process in industrial context

Easy to use: a simple right-click

20

K
er

m
et

a
in

 c
om

pi
le

d
m

od
e

QUESTION ?

Try the compiler !
Download Kermeta 1.3.0

Documentation available on the Kermeta web site
http://kermeta.org/community/dev/compilerCompilingIssues

	Outline
	Motivation
	Compilation process
	Compilation process
	Compilation process
	Need of a model in complement of Ecore
	Need of a model to complement an *.ecore
	Implementation details
	Implementation details
	Implementation details
	How to customize the compilation process
	Current limitations
	Experiments
	Experiments: AntWorld Simulation
	Experiments: AntWorld Simulation
	Experiments: AntWorld Simulation
	Experiments
	Conclusion
	Outline
	Motivation
	Compilation process
	Compilation process
	Compilation process
	Need of a model in complement of Ecore
	Need of a model to complement an *.ecore
	Implementation details
	Implementation details
	Implementation details
	How to customize the compilation process
	Current limitations
	Experiments
	Experiments: AntWorld Simulation
	Experiments: AntWorld Simulation
	Experiments: AntWorld Simulation
	Experiments
	Conclusion

